Differential Imaging of Biological Structures with Doubly-resonant Coherent Anti-stokes Raman Scattering (CARS)
نویسندگان
چکیده
Coherent Raman imaging techniques have seen a dramatic increase in activity over the past decade due to their promise to enable label-free optical imaging with high molecular specificity. The sensitivity of these techniques, however, is many orders of magnitude weaker than fluorescence, requiring milli-molar molecular concentrations. Here, we describe a technique that can enable the detection of weak or low concentrations of Raman-active molecules by amplifying their signal with that obtained from strong or abundant Raman scatterers. The interaction of short pulsed lasers in a biological sample generates a variety of coherent Raman scattering signals, each of which carry unique chemical information about the sample. Typically, only one of these signals, e.g. Coherent Anti-stokes Raman scattering (CARS), is used to generate an image while the others are discarded. However, when these other signals, including 3-color CARS and four-wave mixing (FWM), are collected and compared to the CARS signal, otherwise difficult to detect information can be extracted. For example, doubly-resonant CARS (DR-CARS) is the result of the constructive interference between two resonant signals. We demonstrate how tuning of the three lasers required to produce DR-CARS signals to the 2845 cm⁻¹ CH stretch vibration in lipids and the 2120 cm⁻¹ CD stretching vibration of a deuterated molecule (e.g. deuterated sugars, fatty acids, etc.) can be utilized to probe both Raman resonances simultaneously. Under these conditions, in addition to CARS signals from each resonance, a combined DR-CARS signal probing both is also generated. We demonstrate how detecting the difference between the DR-CARS signal and the amplifying signal from an abundant molecule's vibration can be used to enhance the sensitivity for the weaker signal. We further demonstrate that this approach even extends to applications where both signals are generated from different molecules, such that e.g. using the strong Raman signal of a solvent can enhance the weak Raman signal of a dilute solute.
منابع مشابه
Chirped-pulse adiabatic control in coherent anti-Stokes Raman scattering for imaging of biological structure and dynamics.
Two novel control methods based on adiabatic passage are proposed to be implemented in coherent anti-Stokes Raman scattering (CARS) microscopy for noninvasive imaging of biological structure and dynamics. The first method provides optimal pulse-area control of the resonant vibrational transitions by using a pair of equally linear-chirped pulses. The second method, named the 'roof' method, utili...
متن کاملOne-laser interferometric broadband coherent anti-Stokes Raman scattering.
We introduce an interferometric technique for eliminating the non-resonant background of broadband coherent anti-Stokes Raman scattering (CARS) microscopy. CARS microscopy has been used for imaging a number of biological samples and processes, but the studies are mostly limited to detecting lipids in biological systems by probing the C-H stretch. Non-resonant background and incoherent noise sou...
متن کاملAbstract Submitted for the MAR06 Meeting of The American Physical Society Suppression of Non-Resonant Background in Broadband Coher- ent Anti-Stokes Raman Scattering Microscopy with Interferometry1 TAK
Submitted for the MAR06 Meeting of The American Physical Society Suppression of Non-Resonant Background in Broadband Coherent Anti-Stokes Raman Scattering Microscopy with Interferometry1 TAK KEE, MARCUS CICERONE, National Institute of Standards and Technology — We demonstrate an interferometric technique for suppressing non-resonant background in broadband coherent anti-Stokes Raman scattering ...
متن کاملCoherent anti-Stokes Raman scattering (CARS) microscopy imaging at interfaces: evidence of interference effects.
We show in this paper that the contrast of the interface between resonant and nonresonant media imaged in Coherent anti-Stokes Raman scattering (CARS) microscopy strongly depends on the pump and Stokes fields spectral detuning. More specifically, when this detuning drives the vibrational resonance with the maximum phase difference, a spatial dip appears at the interface in the CARS image. This ...
متن کاملSingle Pulse Phase-Control Interferometric Coherent anti-Stokes Raman Scattering Spectroscopy (CARS)
In coherent anti-Stokes Raman scattering spectroscopy (CARS) experiments, usually the amplitude of the signal is measured and the phase information is lost. With a polarizationand phase-controlled pulse shaping technique, the relative phase between the resonant and non-resonant CARS signals is controlled, and spectral interferometry is performed without an interferometer. Both the real and imag...
متن کامل